Lab 1: C# Variables and Expressions

In this lab, you will be writing simple console-mode applications in C#.

Prelab

View the MVA video on Understanding Data Types and Variables.

Create a **lab1** folder (similar to what was done in Lab 0). Use one of your Lab 0 programs as a template.

Instructions

Solve the following programming problems. Each program should be in the form of a separate Visual Studio project (and folder). Each program should also have a comment block at the top (see notes for details.)

1. Write a program that computes and displays the circumference of a circle with a radius of 12.5. The circumference is 2π times the radius, or about 2 times 3.141592654 times the radius.

Use three **double** variables: one for pi, another for the radius, and the third for the circumference.

NOTE: This program will always output the *same* answer ... which is around 78.5.

2. Modify the Program 1 to prompt for and accept a radius from the person running the program.

See M2X2.cs as an example of an interactive program.

NOTE: This program can calculate *many* different circumferences from many different radii. For example, if the user enters 12.5, it will output a result close to 78.5, like Program 1.

NOTE 2: Start by making a copy of the Program 1 folder using Windows Explorer. From Visual Studio, open the copy.

3. Modify Program 2 to make pi a **constant**, instead of a variable:

const double PI = 3.141592654;

(The programming convention is to use all capital letters for constant names.)

NOTE: This is a simple change to Program 2. The const keyword prevents any code from accidentally or intentionally changing the value of a constant, by triggering a compiler error. Try adding the line PI = 4 ; to your code (anywhere in Main after the above line) and see what happens.

NOTE 2: This program should give identical (or nearly-identical, some small fractions may be different) output to Program 2 for the same input!

- 4. Modify Program 3 to use Math.PI instead of the PI constant (remove the declaration line for the PI contsant and replace it in your calculation with Math.PI.)
- 5. Mortgage calculator program from the companion guide (CSharpForBeginners2.pdf, pp. 8-9).

Use String.Format("{0:C2}", total) to format the total amount in dollars and cents.

6. (Taken from the CTEC1184 Excel Training lab.)

"Below you will find a formula. Convert it to a single line and place it in cells A1 and A2 respectively. Do not use built in functions for these formulas."

$$\frac{3x+5}{y+2^x} + \frac{y}{x}$$
, where $x = cell A3$ and $y = cell A4$

Use double variables, A1, A2, A3, and A4. Initialize A3 to 5 and A4 to 3. Calculate the A1 result using the .NET Math.Pow() method for the 2^x term. Calculate the A2 result using the following code for the 2^x term:

7. (Taken from ELEC1126.)

ELEC1126 EXPERIMENT #4	DC ELECTRICAL CIRCUITS SERIES DC CIRCUITS	
PERCENT VARIATION =	MEASURED VALUE - THEORETICAL VALUE	× 100 %
	THEORETICAL VALUE	

Get the theoretical value and measured value from the user. Calculate and display the percent variation. Use the .NET Math.Abs() method to compute the absolute value.

Due Date

All programs should be completed and submitted by end-of-day, Friday, February 24th, 2017.

The Mid-Term Exam is on Wednesday, March 8th and is partially based on these programs.