
PIC Programming - © Michael van den Bogerd

1 | P a g e L a s t e d E d i t e d : 1 2 - J a n - 1 3

Understanding

Flow Charts

INTRO

 The use of Flow Charts has been around for a long time as a means of developing a strategic

plan or algorithm for solving numerous kinds of problems. Flow charts have been used in everything

from business, industrial processes, computer programming, and even baking a cake. While numerous

other methods have been devised over the years flow charting remains nevertheless a simple yet

effective way of solving many problems in computing. In this article, I discuss the most common

elements and adapt their usage to reflect typical situations encountered in computer programming.

 It should be noted that I do not always strictly follow tradition in my terminology or usage of the

symbols that will be introduced. In part this is because many of the traditional symbols were developed

in the day of card readers and reel to reel computer tapes and have long since lost their relevance. I

have therefore exercised some liberty in readapting their original role to something a little more

applicable to present needs.

 What is important is that the reader appreciates that flow charting in general is a way to force

us to think through problems in a logical and orderly fashion. A well written flow chart can almost

always be ported over to assembly language, or any other computing language, often in a near one to

one fashion. This makes flow charting especially powerful as a way of communicating an algorithm

across computing platforms.

START & TERMINATORS

 To mark the beginning and end of each Flow Chart is the basic oval symbol depicted above. The

start of the Flow Chart (point at which program execution begins) employs a header in which is written

the name of the program, subroutine, or overall process. Sometimes people simply write “START” or

“BEGINNING” for their entry point but it is more meaningful to identify the process or subroutine name;

something that identifies what the overall Flow Chart is about in a few words. This is especially

important if the flow chart does not explicitly document the overall objective elsewhere, like in a

drawing title. The start symbol may be referred to as a header but its shape and basic purpose are fairly

universal otherwise.

 Similarly, the end of the Flow Chart must be identified, again usually with another labeled oval.

Here it is customary to use the word “END” or something similar in meaning. In my example above, I use

the assembly instruction “RETURN” to indicate that this is where my subroutine ends and returns to the

PIC Programming - © Michael van den Bogerd

2 | P a g e L a s t e d E d i t e d : 1 2 - J a n - 1 3

main program. For the main program itself, “END” might be the better descriptor to differentiate it from

a subroutine. In either case, the purpose should be obvious to the reader.

 Some authors differentiate between the start symbol and end terminator by using more circular

shapes for the start and restricting the oval depicted above to the terminator. The difference has not

proven important in my case and I use the one shape for both. The labeling and position of my symbols

is what makes the difference in purpose clear. Also, because subroutines in assembly instruction end

with the “return” instruction, I frequently use a “RETURN” terminator and sometimes more than one

which reflects how my program is actually constructed. If I can direct the flow chart’s end to one

common “RETURN” I will, as long as it doesn’t make my flow chart messy with lines running everywhere

and over top of each other. I like my flow charts to be pretty.

 A subroutine that is called from another part of the program does not care which return it

encounters first in order to terminate the routine (task), any return will do. Some may be disturbed to

see more than one return used within a program subroutine and are inclined therefore to park a single

return at the end of their subroutine code with multiple “goto’s” planted within the routine directing all

exit traffic to that one return. This is unnecessary however and only wastes another processor clock

cycle to implement. Many programming purists are loathed to use goto’s in any case, arguing that they

lead to unstructured programming and risk jumps to regions outside the subroutine boundary. If your

code reaches a natural exit point at multiple positions within the code, put a return there, it is a

perfectly logical thing to do. There are many roads leading out of a city; you don’t always have to take

the same road when leaving. Still, when it comes to the flow chart, some will insist for their own reasons

on only ever seeing one terminator.

 As far as the start is concerned, here I must insist on one start point which in assembly language

is identified by a unique label (e.g. “Subroutine1”). So while it may be equally true that there are many

roads leading into a city, when it comes to program subroutines, all the roads leading out are one ways,

and there’s only one leading in.

DECISION MAKING

 Another commonly used Flow Chart symbol is the diamond shaped decision symbol. In this case

a condition is evaluated to see whether it is true or false (“YES” or “NO”). For example: “Is X greater than

Y?” A simple binary outcome then results with one of two possible paths being executed following the

decision block, depending on the result of the conditional test.

PIC Programming - © Michael van den Bogerd

3 | P a g e L a s t e d E d i t e d : 1 2 - J a n - 1 3

 It is possible to implement a decision making task with more than just two possible outcomes,

though by far the most common form is one that results in either a “YES” or “NO” response. An example

of a multi-path decision block might be one which asks the question “what range does variable ‘X’ fall

within” in which case the possible ranges could be 0-25%, 26-50%, 51-75%, and 76-100% which would

result in the process taking one of four possible paths. Ordinarily however more complex decisions such

as this can ultimately be broken down into simpler Yes/No questions which are always easier to

implement in assembly code.

 For example, we could have broken the range problem into successive questions like: “Is

X<26%?”. If false, then we’d ask the next obvious question: “Is X<51%?”, and so on until we cover the

entire range, each time creating a decision path corresponding to the answer to each test, as illustrated

below. Note the inclusion of arrows which show the direction of program flow. These are an essential

component of Flow Charts and only ever assume one direction (i.e. program flow can only proceed in

one direction along any given path).

TASKS (PROCESS SYMBOL)

 Every program ultimately requires that some intermediate task be performed, whether to

calculate some math function, move data, or whatever. To represent tasks that do not explicitly act on

physical inputs or outputs, the more generic symbol is simply a rectangle as shown below.

 I use this symbol whenever I am performing some math function, copying or moving register

values, or modifying bit values of internal registers (e.g. setting a software flag). This symbol can

generally be thought of as performing some action or task. It is also referred to as a “process” symbol.

The term task however seems to be gaining more traction in computing lingo these days but to each his

own.

PIC Programming - © Michael van den Bogerd

4 | P a g e L a s t e d E d i t e d : 1 2 - J a n - 1 3

SUBROUTINE

Similar to the task or process symbol is the subroutine symbol drawn above. This rectangle with two

double sides is sometimes referred to as a “predefined process” symbol (i.e. a process that was

previously defined). In effect, it represents a more complex set of procedures, sub tasks, or entire other

program. This symbol is useful when you’re developing code for a main program that serves as a task

manager and each of the many sub tasks can then be represented by this symbol. A separate flow chart

would then be used for each sub task (subroutine) that details their operation.

PAGE CONNECTORS

 When a flow chart cannot be fully constructed on one page, page connectors are used to show

that program flow continues on another drawing page (sheet). The direction of flow is indicated by

sender and receiver symbols. I like to draw my sender symbol using “to” in the label with the pointy end

opposite the line connector. Similarly, the connector where program execution continues (i.e. the

receiver) is drawn with the connector tied to the pointy end of the symbol like a tag. The receiver input is

labeled as “from” to show that the flow chart’s program flow continues here from somewhere else (the

source location should be identified in the label). The sender and receiver symbols may be called input

and output respectively or some other similar idea. Some drawings use grids that further aid in

identifying the sender and receiver locations on the drawing, especially where multiple off page

connectors are used.

 The circular connectors are used where flow chart connector lines cannot be easily drawn from

point A to point B within the same drawing and must be broken. In that case, these connectors show

that a line continues at a different point on the same drawing. Some labeling system, like the

aforementioned grid lines, must then exist to aid the reader in locating the start and finish points of a

broken connection to be able to follow the logic flow. Alternatively, the flowchart could simply use

unique alphanumeric labels like “A”, “B”, “C”, “1”, “2”, “3”, etc. at both line ends.

 If multiple lines must be connected on the same page using page connectors, then each would

share the same label, similar to multiple occurrences of the “ground” or “common” symbol on an

electrical schematic. Just to emphasize the point, all lines that represent the same point (node) must be

PIC Programming - © Michael van den Bogerd

5 | P a g e L a s t e d E d i t e d : 1 2 - J a n - 1 3

labeled the same and arrows should also be used to clearly demonstrate the direction of logic flow along

lines.

In electrical drawings, page connectors are often just arrows or symbols similar to the off page

connectors above. The point is to use symbols and labels in such a way as to clearly indicate the

direction of the flow chart’s logic; there should be no ambiguity as to what is meant in the drawing.

MISCELLANEOUS SYMBOLS

 Additional symbols used in flow charting are those depicted above and these may be used as

alternatives to the basic rectangular task or process symbol previously introduced. These too were

developed around older technologies and may or may not be applicable to the user. The display symbol

for example was developed when CRT (Cathode Ray Tubes) were in vogue. I have adapted it in my

example for an LCD display. I could just as easily have written the same instruction into a rectangular

process symbol or the unique output symbol I have created below.

 The manual process symbol was probably not intended for software but here I’ve exploited it to

“energize a solenoid” (I figured a solenoid was electro-mechanical so it’s about as close to a manual

process as I could figure for software control, or maybe not). The manual input symbol is easier to see

an application for. In this instance, I’ve shown an example for checking the numeric keypad for manual

entry. The “card” symbol goes back to those days when a computer program was punched on paper

cards that were then fed into a card reader. In my example, I’ve adapted it to read in an analog input.

 The parallelogram symbol (leaning rectangle) is the data symbol. How this symbol was originally

intended to be used is unclear to me but here I’ve demonstrated its use in copying data from one

register to another. Additional symbols to these exist that relate to the kind of hardware that existed

from the earliest days of computing through to the 1990’s but have now largely become obsolete. There

is no particular reason why a given industry cannot modernize the symbols to relate to its own

peculiarities today and many in fact have. The two symbols below for example represent an old and new

symbol applied for tasks that involve inputs and outputs, primarily external I/O as opposed to data

moves or tasks inside the computing process.

PIC Programming - © Michael van den Bogerd

6 | P a g e L a s t e d E d i t e d : 1 2 - J a n - 1 3

The decision whether to use these or any newly created symbols in lieu of a simple rectangle for all tasks

depends on the degree to which the distinction is deemed useful. The case may be drawn for at least

using a unique symbol for external inputs and outputs, as I’ve illustrated above, to differentiate from

tasks performed strictly within software. This is because reading and writing to I/O transcends the

software environment and crosses over into the real world. Using these additional symbols therefore

permits the reader to more readily note those tasks visually that engage physical hardware.

The output symbol could be used generically for

any and all forms of output devices, whether

solenoids, relays, motors, other microcontrollers,

or display elements like LCDs, LEDs, or serial

communications.

The argument could be made for further sub-

dividing these into more explicit symbol types but

too many symbols does not necessarily improve

the point of the flow chart and may in fact make it

more difficult to interpret, not to mention draw.

The symbols that I have described thus far have

served me well and I have not found any burning

need for more.

Again, the importance of the flow chart is to aid

the designer in breaking the problem down into a

sequence of smaller logical steps (tasks and

decisions) that ultimately lead to a workable

solution. Of course, if you’re doing it to win a

drafting contest, then knock yourself out.

An example of a flow chart for implementing a motor

overload with i
2
t trip function is given above. In this

example, the motor amps are read in another routine

and stored in the 8 bit binary word ADRESH (Analog to

Digital Result High). OLPU is the overload pickup target and OLSum is a 16 bit overload timer that accumulates the

i
2
t product (this represents the thermal energy in the motor proportional to the product of amps squared and time).

The flow chart was written for conversion to assembly code using Microchip’s PIC18F4520 MCU (Microcontroller

Unit) as a simple demonstration of how modern current overload devices use embedded solutions in lieu of older

electro-mechanical thermal devices. Note that program flow is explicitly shown throughout the flow chart using

arrows.

