Workshop Reverse Engineering Lecture

NIAGARA COLLEGE TECHNOLOGY DEPT.

Purpose

• Often when designing circuits, you must convert an existing PCB into a schematic to analyze the theory or update it.

• Ex: Here a power supply is re-created at similar size by reverse engineering the original CCT.

• Useful when the schematic is lost or no longer available.

Reverse Engineering

- Must be able to identify components.
- Must be able to measure output waveforms, voltage levels, currents and determine power requirements.
- Watch for vias, multi-layered board, traces under components...

- Step1: Identify all major components
 - o ICs
 - Transistors, MOSFET, IGBT etc...
 - Relays
 - Any other large multi-pin device
 - Place them in the middle of your drawing, and identify/label
 each pin with their function (have to find a datasheet!).

- Step2: Identify all INPUTS, OUTPUTS, and POWER
 - o Locate the inputs such as signal, Vcc, Vdd, Vee etc...
 - o Locate all outputs such as signal, control, Vcc, etc...
 - Locate all power and ground connections
 - Draw the inputs on the left, and outputs on the right of your diagram.
 - ➤ If there are test points, you will include them as you go. Always include them.

- Step3: Trace one pin at a time to Power Supply,
 GND, INPUT, OUTPUT, or other major components.
 - May need to use a DMM as a continuity tester to determine where traces end up.
 - Ensure you place a DOT on all junctions where three or more lines are connected.
 - Draw all interconnections with HORIZONTAL or VERTICAL lines ONLY.
 - Place component values in your schematic AS SOON AS YOU FIND THEM to be able to reference in other traces later.

- Step4: Repeat STEP3 until all traces are complete.
 - Focus on one trace at a time, and always include junction DOTS.
 - If you come to passive components (resistors, capacitors), include them as well.
 - When complete, count number of components and double check that all are included.
 - o Check that each input, output, pin and component is labelled.

Step5: Final Check

- Modify your traces (use pencil!) to ensure minimal crossovers.
- Ensure all lines are either vertical or horizontal.
- Verify component identification and that all pins are labelled.
 - Unused pins must be labelled, usually with 'NC' (Not connected).
- Ensure no unattached connection points remain.

Motor Driver Reverse Engineering

Final version, top and bottom. (Original not shown)

- Step1: Identification of components
 - o 1x Opto-Isolation TLP620 16pin DIP
 - o 2x TIP122 (NPN Darlington Transistor) TO220
 - o 2x TIP127 (PNP Darlington Transistor) TO220
 - o 1x 3pin header
 - o 4x 1kOhm Resistor
 - o 4x 2.2Kohm Resistor

TLP620 Datasheet Excerpt

Pin Configurations (top view)

3 : EMITTER 4 : COLLECTOR

TLP620-2

TLP620-4

CATHODE 2, 4 : CATHODE ANODE 5, 7 : EMITTER

6, 8 : COLLECTOR

1, 3, 5, 7 : ANODE, CATHODE 2, 4, 6, 8 : CATHODE, ANODE 9, 11, 13, 15 : EMITTER 10, 12, 14, 16 : COLLECTOR

Weight: 0.54 g

Weight: 1.1 g

• Step 2: Draw the major components in the middle of your drawing:

- Step 3: Trace pins of main component (DIP chip) one pin at a time.
 - o Inputs: Power, GND, Signal-A, Signal-B
 - o Outputs: Motor-Positive, Motor-Negative

Step 4: Repeat Step 3 until complete

Step 5: Label all component and double check each

trace

Computer PCB Re-Design

Reverse Engineering Example 2

Silkscreen Top

Bottom Copper (Bottom view)

Reverse Engineering Example 2

• Example 2 Schematic:

