Useful Formulae and Constants

Wein's Law	$\lambda_{max} T = 2.897^*$	10 ⁻³ mK			
Basic Physics	v = d / t	Area = πr^2			
Gain	$g = \Delta N \sigma_0$	where σ_0 is the c	ross-section		
	-E			- <i>t</i>	
Boltzmann's Law	$N = N_0 \exp^{\overline{kT}}$	-	Decay	$N = N_0 \exp^{\overline{\tau}}$	
Threshold gain	$g_{threshold} = \gamma + \frac{1}{2}$	$\frac{1}{x}\ln(\frac{1}{R_1R_2})$	Planck's Relationship:	$E = hv = \frac{hc}{\lambda}$	
EO Transmission	$T = T_0 \sin^2\left(\frac{\pi V}{2V_{1/2}}\right)$	-) 2	Half-wave Voltages	$\frac{V_{\frac{1}{2}-\lambda_1}}{V_{\frac{1}{2}-\lambda_2}} = \frac{\lambda_1}{\lambda_2}$	
Linewidth:	$\Delta v = 2v_0 \sqrt{\frac{2k}{2}}$	$\frac{dT \ln(2)}{Mc^2}$	Saturation Intensity:	$I_{sat} = \frac{hv}{\sigma_0 \tau}$	
Fresnel equation:	$R = (\frac{n_1 - n_2}{n_1 + n_2})$	2	Saturated Gain:	$g_{sat} = \frac{g_0}{1 + \frac{\rho}{\rho}}$	
Bragg Diffraction	$\theta_{B} = \frac{\lambda f}{2\nu}$		Acoustic Wavelength	$\Lambda = \frac{v_{acoustic}}{f}$	
Eabry-Derot Interferometer $ESP = c/2nt$					

abiy i ciot interiorineter	1010 = 0/2110	
Macroscopic Polarization:	$P = a_1 E_0 \cos(\omega t) + \frac{1}{2} a_2 E_0^2 - \frac{1}{2} a_2 E_0^2 \cos(\omega t)$	s(2ωt) +
Linear Term:	$a_1 = \varepsilon_0 (n^2 - 1)$	
AOM:	$DE = P_{1 \text{ st order RF on}} / P_{0 \text{th order RF off}}$	$IL = P_{Input} / P_{0th order RF off}$

0 C = 273.15 K

 $1eV = 1.602E^{-19}J$

k = Boltzmann's constant (1.38 * 10^{-23} J/K)

h = Planck's constant (6.626 * 10^{-34} Js)

c = Speed of Light $(3*10^8 \text{ m/s})$

 ε_0 = permittivity of free space (8.85*10⁻¹² F/m)

1 mole = 6.02×10^{23} atoms/molecules

Indices of Refraction: Quartz = 1.46, Glass = 1.51

Dilated Pupil = 0.4 cm²

Atomic masses: Neon = 20 amu, Argon = 38 amu, Helium = 4 amu, Cadmium=112 amu, $CO_2 = 44$ amu, Krypton = 83.8 amu